Fullymax focuses on the high rate discharge pouch batteries, including power batteries for electric aviation aircraft (eVTOL), electric power , drones, electronic cigarettes, fast charging batteries,12V/48V Start/Stop batteries and jump starter for car, RC professional remote control models and toy , military and special equipment, etc. FULLYMAX batteries are also widely used in smart home like sweeping robots, vacuum cleaners, small power tools, etc.; 3C consumer electronics like remote control handles, beauty equipment, portable projectors, etc., smart Bluetooth products, medical equipment ,ect
FULLYMAX 16450 3.7v 900mah rechargeable lithium ion polymer lipo battery for E-cig
Storage with fully charged status at room temperature (23±2℃)for three months, the OCV is higher than 4.155V, the self discharge is at leading level among the industry.
Battery Maintenance Keep Batteries Charged. As explained above, keeping some charge in your battery can extend the life of your battery, especially if you go some time without using it. |
Related Feature
For other configurations (without discharge plug) with same cell model, please refer below table.
Model No. | Capacity | Voltage | C-Rate | Size | Weight | Remark |
FBC13400 | 550mAh | 3.7V | 3A | Φ13*40.5mm | 11.2g | Cylindrical Cell |
FBC16350 | 650mAh | 3.7V | 3A | Φ16*35mm | 13g | |
FBC16450 | 900mAh | 3.7V | 10A | Φ46*45mm | 17.5g | |
FBC17350 | 850mAh | 3.7V | 3A | Φ17*35mm | 15g | |
FBC18250 | 600mAh | 3.7V | 3A | Φ18*25mm | 11.5g | |
FBC18350 | 1 000mAh | 3.7V | 3A | Φ18*35mm | 16.8g | |
FBC18400 | 11 00mAh | 3.7V | 3A | Φ18*40mm | 21g | |
FBC23610 | 2800mAh | 3.7V | 25A | Φ23*61mm | 52g | |
FBC801844 | 520mAh | 3.7V | 5A | 7.8*18.0*41.0mm | 10.5g | Pouch Cell |
FBC961941 | 690mAh | 3.7V | 5.5A | 9.6*19.0*41mm | 13.5g | |
FBC1061941 | 7 50mAh | 3.7V | 6.4A | 10.6*19*41mm | 14.2g |
Product Feature
- Fast Charge, 4min up to 90%
- High Efficiency, Effective Voltage>90% (3A, 3.3V)
- Long Cycle Life, Discharge Capacity≥90% After 300 Cycles
- Excellent Discharge Performance at Low Temperature (-20℃)
Performance display
Disposable / Twice E-cig battery C rate performance can match market demand. | Storage with fully charged status at room temperature (23±2℃)for three months, the OCV is higher than 4.155V, the self discharge is at leading level among the industry. |
Manufacturing Capability
Capacity&Leadtime
|
|
● Stacking/per day:50Kpcs
● Winding/per day:2,00Kpcs
|
● Regular Model:≤8 weeks
● Customized:16-18 weeks(The first order, if nonew facility added )
|
The new plant will be located in the Dongjiang Bay Industrial Park, which will be a national high-end industrial park special for new energy, new information technology and intelligent equipment fields based on the “3+7” industrial park planning and deployment proposed by Huizhou relying on the Greater Bay Area, aiming to integrate Huizhou’s “1+4” industrial parks. The area of the new plant is estimated to be 30,000 square meters. With new high-end equipment and workshop environment, the goal is to build a high-end production line dedicated to high-end customers. |
Quality Management Syste |
Management Improvement according to international standards |
ISO9001 Quality Management System |
ISO14001 Environmental Management System |
Occupational Health And Safety Management System |
Hazardous Substance Process Management System |
Aeroepace Quality Systems AS9100D:2016 |
Safety and environmental Certificates capability&service |
|
Performance Test Capability |
|
FAQ
Q1. What are the diferences betwee high C-rate and low C-rate lithium? |
polymer (Li-Po) batteries.
|
Q2. How is a Li-Po battery made? |
When a Li-Po battery is made, five main aspects should be considered carefully: (1). Battery Pack should have suficient strength, so that the polymer battery inside could be efectively protected from mechanical shocks; (2). The polymer cell should be fixedto the battery pack onits large surface area - no cell movement in the battery packshould be allowed; (3). No sharp edge components should be inside the packcontaining the polymer battery, and meanwhile, suficient insulation layer between wiring and the cell should be used to maintain multiple safety protection; (4). Ultrasonic welding is recommended for polymer tab connection to obtain low-resistance, high-reliability and light-weight properties;(5). Polymer packs shouldbe designed carefully so that no shear force is applied, and also, no heat is generated even when leakage ocurs for mishaps. PCM from electrolyte leakage should be isolated as perfectly as posible, and narrow distance between bare circuit patterns should be avoided.
|
Q3. What gases are generated in the formation process. Are they dangerous? |
The generated gases include Co, CO2,H2, CH4 and so on. They are not dangerous because of low volume.
|
Q4. Why do we need formation process? |
Organic solvents easily decompose on the negative electrodes during charging, leading to battery swelling, drop of cell capacity, and unsafety caused by activereaction. The purpose of the formation process is to form a solid layer called the solid electrolyte interphase (SEl), which is electrically insulating yet provides significant ionic conductivity. This interphase prevents further decomposition of the electrolyte after the second charging.
|
Q5. Why do Li-Po batteries bloat/swell? |
The Li-Po batteries may bloat or swell due to the following reason: 1. Overcharging:Normally, the maximum charge voltage is 4.2V for RC batteries. If the batteries were overcharged beyond 4.4V, electrolytic oxidation process would happen, which generates mass gas leading to battery swelling. 2. Overheat:When discharging in high temperature or high C rate, the temperature of the inner part of the battery can be even higher, which gasify the electrolyte and results in swelling. 3. Shot-circuit.:If short circuit happened, the cell voltage would drop very fast and the electrolyte would be reactive to generate gases, leading to battery swelling. 4, Sealing:If sealed without proper processing, the battery cell would have water and air in, so that the electrolyte would be reactive to generate gases, leading to battery swelling. |